PRODUCTS VIDEO

Flussschmelze DC Electric Bogenofen
Elektromagnetisches Rühren und geschmolzener Bewegungszustand
Goldmine schmelzend DC Untergetauchtes Lichtbogenofen
Edelstahl Remeling DC Electric Bogenofen
Seltener Metallindium -Schmelzdc -Lichtbogenofen DC
Stahlpost-Aluminiumproduktionslinie
x

WHY CHOOSE US?

Energiesparende | Stabil | ZUVERLÄSSIG

  • Energieeinsparung

    Sparen Sie 15% Strom
  • Hohe Effizienz

    Erhöhte Produktion
  • Automatisierung

    Hoher Automatisierungsgrad
  • SAFTY

    Hoher Sicherheitsfaktor
  • Profitieren

    Hohe Rendite

PARTNER

Uniting expertise for exceptional bending solutions

Zirkonia Corundum Smelting DC Electric Bogenofen
Rote Schlammeisenherstellung DC untergetauchtes Lichtbogenofen
Kalziumaluminat Schmelz DC Elektrischer Bogenofen
Beryllium Kupferlegierung Schmelze DC Elektrischer Lichtbogenofen

Über Younengde

DC Electric Bogenofen, DC -untergetauchte Lichtbogenofen

10 + Years
Dedicated to the development and production of bending machine for more than 10 years
30 + R&D
R&D patent certificate
30 + People
Professional technicians
20 + Teams
Professional R&D Team
50 + Client
Customized Solution Customers

NACHRICHTEN

Wissensaustausch über DC -Bogenöfen, DC -untergetauchte Lichtbogenöfen und Schmelzprozesse.

MEHR SEHEN +
Eigenschaften der doppelten Elektrode DC Elektrischer Lichtbogenofen/ untergetauchter Lichtbogenofen
Ausrüstungseigenschaften : 1. Der Stromverbrauch beträgt 10% ~ 15% geringer als der des Wechselstromofens. 2. Der Verbrauch von Graphitelektrode ist 40% geringer als der von Wechselstromofen. 3. Im Vergleich zum Wechselstromofen wird die Investition von Reaktiven Stromkompensationsgerät beseitigt. 4. PLC Automatische Steuerung, Produktionsrhythmus ist stabil und zuverlässig. 5. In dem Schmelzprozess bleibt der Strom gemäß den Prozessanforderungen ohne Herunterfahren unverändert, der Spannungsniveau nimmt nach Belieben zu oder nimmt ab, und dann ändert sich die Lichtbogenlänge nach Belieben, um die offenen Bogen- und unterversetzten Bogenfunktionen zu realisieren . Es kann auch die Spannung und die Stromversorgung willkürlich einstellen. 6. Die Elektrode kann ihre Polarität im Schmelzprozess nach Belieben ändern, was die Schmelzzeit stark verkürzt. 7. Da der schwerwiegende thermische Effekt der Bodenanode der Boden des einzelnen Elektroden -Gleichstromofens leicht ausbrennen ist. Der doppelte Elektrode -Gleichstromofen hat keinen Bodenanodeneffekt, was das Problem vollständig löst . 8. Die Hauptkontrollplatine der DC -Stromversorgung hat die Funktion der photoelektrischen Isolierung, die das starke Magnetfeld in der Produktionsstelle effektiv vermeiden kann, um die Stabilität der Steuerkreis im Produktionsprozess zu stören. Das Board verfügt auch über die Funktionen von Überspannung, Überstrom- und Hochtemperaturschutz, was die durch Kurzschlusskreis verursachten Schäden am Gerät effektiv vermeiden kann. 9.DC -Plasma -Schmelzausrüstung Die Elektrode -Zentrum -Temperatur ist hoch, die Wärmekonzentration, leicht zu tief begrabene Elektrode, der Ofenboden ist nicht einfach zu steigen, geeigneter für Schmelzprodukte, die Schmelzprodukte verschmelzen. 10. Im Schmelzprozess werden Metallionen in der Schmelze aufgrund der Elektrolyse um die negative Elektrode konzentriert, um die Ausbeute und Reinheit von Produkten zu verbessern, was für die Anreicherung von Edelmetallen und anderen hochwertigen Metallen förderlicher ist . 11. Die Stromrichtung und die elektromagnetische Feldrichtung des Gleichstromofens bleiben unverändert. Angetrieben vom Magnetfeld zirkuliert die geschmolzene Schlämme ständig in eine Richtung und bildet elektromagnetisches Rühren, so dass das Material ohne tote Ecken schmilzt, die Produktqualität hoch und die Ausbeute hoch ist. Die aktuelle Richtung des Wechselstromofens ändert sich jedoch 50 -mal pro Sekunde, und die Richtung des Magnetfeldes ist chaotisch, was es unmöglich macht, die elektromagnetische Rührfunktion zu realisieren. 12. Der Geräuschpegel beträgt 10 ~ 20 d B niedriger als der Wechselstromofen. 13. Der Verbrauch von Gleichstromofen von Graphitelektroden ist 40% niedriger als der von Wechselstromofen. 14. Der Refraktor der Ofenwand hat eine lange Lebensdauer. Der Winkel zwischen Lichtbogenlicht und Graphitelektrode des Wechselstromofens beträgt 45 ° und ist leicht zu treffen, was die Ofenwand traf, wodurch die feuerfeste Ofenwand beschädigt wird. Der Winkel zwischen Lichtbogenlicht und Graphitelektrode des DC -Ofens beträgt 30 ° und es ist nicht einfach, die Ofenwand zu treffen. 15. Wenn ein Unfall im Schmelzprozess auftritt und für einen bestimmten Zeitraum ein Stromausfall auftritt, wird auf der Oberfläche der geschmolzenen Flüssigkeit eine isolierende Hartschale gebildet. Wenn der einzelne Elektrode -DC -Ofen auf diese Situation trifft, kann die Ausrüstung nicht weiter schmelzen, sodass sie nur abgebaut werden kann. Angesichts dieser Situation kann der Doppelelektrode -DC -Ofen wieder mit Bogenschmelze beginnen, indem Arc -Schlagmaterial wie Koks am Boden der Elektrode hinzugefügt wird.
  • 02
    2024-03
    Unternehmensprofil
    Anyang Younengde Electric Co., Ltd ist ein High-Tech-Unternehmen, das sich auf Forschung und Entwicklung, Design, Herstellung, Installation und Inbetriebnahme von DC-Plasma-Schmelzgeräten , Hochleistungs-DC-Stromversorgung und nicht toxischer Behandlungsausrüstung mit soliden Abfällen / gefährlichen Abfällen spezialisiert hat . Unser Unternehmen hat 35 neue praktische technische Patente für DC -Plasma -Schmelzgeräte erhalten . Die Ausrüstungskapazität beträgt 50 kVA bis 30000 kva. Der Prozess der Extraktion und Anreicherung seltener und kostbarer Metalle aus Roherz, Katalysator und industriellem festem Abfall ist ausgereift. Die Ausbeute aus metallischem Silizium und 75 # Ferrosilicon ist hoch im Schmelzen von Kieselsäure. Die Wiederherstellungsrate von Nichteisenmetallen ist hoch, wenn Abfallschaltplatten direkt geschmolzen sind. Calcium -Aluminat -Schmelzprozess ist ausgereift. Unser Unternehmen hat eine professionelle Zusammenarbeit und den technischen Austausch mit vielen Unternehmen und Einheiten im In- und Ausland durchgeführt und hochwertige Produkte geliefert. Produktfallliste Institut für Mechanik der chinesischen Akademie der Wissenschaften (technische Dienstkooperation) Suzhou Institute of Design and Research (technische Servicekooperation) Anyang Longxin Silicon Industry Co., Ltd ( M etallic Silicon Pulver Remelting DC Ofen) Hubei Boxin New Materials Technology Co., Ltd (Metallic Silicon Smelting DC Ofen) Danjiangkou Huiyuan Hejin Co., Ltd (Metallic Silicon Smelting DC Ofen) Peking Central Iron & Steel Research Institute ( Stahlofen) Dalian Wilte Steel Co., Ltd (Vanadium Titanium Iron Experimental DC Ofen) Henan Liyuan Group Co., Ltd (Ferroalloy -Ofen) Wu'an Yuhua Steel Group Co., Ltd (Stahl Aluminiumlegierung DC Ofen) Tangshan Ganglu Steel Group Co., Ltd (Stahl Aluminiumlegierung DC Ofen) Heil Ongjiang Jianghui Huanbao Technology Co., Ltd ( Ferronickel Alloy DC Ofen) Guangdong Guangqing Jinshu Technology Co., Ltd ( Ferronickel Alloy DC Ofen) Henan Jiaozuo Herr Zuo ( M Ulti-Funktion DC Ofen) Rizhao Zhenghong Yanchuang New Materials Co., Ltd (Ferronickel Alloy DC Ofen) Fujian Anxi Ansheng Mining Co., Ltd ( M Ulti-Funktion DC Ofen) Liaoyangshi Taiziheque Boyi Zhuzaochang (Abfallschlacke DC -Ofen) Chongqing Saiyadi Energy Technology Co., Ltd (Red Mud Iron Making DC Ofen) Liaoning Fuyun Refractory Co., Ltd ( Calcium -Aluminat -DC -Ofen) Huolinguole Gerun Huanbao Technology Co., Ltd (Calcium -Aluminat -DC -Ofen ) Huolinguole Lifenglvye Co., Ltd (Calcium -Aluminat -DC -Ofen ) Dalian Yishun LVSE Technology Co., Ltd (Calcium Aluminate DC Ofen ) Danjiangkoushi Wanji Abrasive Materials Co., Ltd (Corundum DC Ofen ) Jiangsu Nantong Taiyang Technology Co., Ltd (Beryllium Copper Alloy DC Ofen ) Jiangsu Nantong Taiyang Technology Co., Ltd (Beryllium Copper Alloy DC Ofen ) Indonesien Pt Metalindo Makmur Mandiri (Test DC Ofen) Korea HF Metal Trade Co., Ltd (PCB DC -Ofen) Guangdong Meizhou Mr. Fu (PCB DC -Ofen) Guizhou Yixiang Kuangye (Gruppe) Zhenyuan Runda Co., Ltd (Precious Metals DC Ofen) Guangxi Zhongwu Kuangye Co., Ltd (Precious Metals DC Ofen) Longyan Changyu New Material Technology Co., Ltd (Precious Metals DC Ofen) Hubei Huanggang Mr. Zhao (Edelmetalle DC Ofen) Henan Yihui Jinshu Technology Co., Ltd ( Drei -Wege katalytische Schmelzfurche ) Shanghai Yudun Xincailiao Technology Co., Ltd (Drei -Wege katalytische Schmelzfurche ) Zhejiang Qike Shengwu Technology Co., Ltd (Drei -Wege -DC -Ofen aus katalytischem Schmelzen ) Zhejiang Metallurgical Research Institute (Drei -Wege katalytische Schmelzofen ) Hubei Zhongyuan Chucheng Environmental Protection Technology Co., Ltd (Drei -Wege katalytische Schmelzdelace ) Huaian Zhongshun Environmental Protection Technology Co., Ltd (zwei Sätze von Drei -Wege -DC -Ofen mit katalytischem Schmelzen ) M Inshan Huanneng Hi-Tech Gufen Co., Ltd (Blei Zinkerz-Test DC-Ofen) Zhejiang Teli Renewable Resources Co., Ltd (Kupferschlammwiederherstellung DC -Ofen) KeyUan Environmental Equipment Co., Ltd ( Gefahrabfallentsorgungsabschluss DC Ofen ) Guanyinshan Waste Incineration Station ( Asche harmlose Entsorgung DC Ofen ) Chaozhou Dongsheng Environmental Protection Technology Co., Ltd ( R Ock Wool DC Ofen) Yongxing CH Ang Long Environmental Protection Technology Co., Ltd (Zinnschlacke Schmelze und Recycling -DC -Ofen) Kunming Dingbang Technology Co., Ltd ( Zinnschmelz -DC -Ofen)
The contribution of DC arc furnace in reducing emissions and improving resource utilization efficiency
The contribution of DC arc furnaces in reducing emissions and improving resource utilization! DC arc furnaces do have certain advantages in environmental protection and resource utilization in industrial production, mainly reflected in the following aspects: High energy utilization efficiency: DC arc furnaces have improved energy utilization compared to traditional AC arc furnaces. DC arc furnace can better control the transportation and penetration depth of arc energy, thereby reducing energy waste and improving energy utilization efficiency in the smelting and smelting process. Reducing carbon emissions: DC arc furnaces usually have better control over temperature and reaction processes during operation, which helps to reduce the generation of carbon oxides and thus reduce carbon emissions. Compared to traditional smelting methods, DC arc furnaces can handle waste and waste more environmentally friendly, reducing carbon dioxide emissions. Recycling of waste and waste materials: DC electric arc furnaces can not only be used for metal smelting, but also for processing waste metals and waste materials. Through this approach, it contributes to the recycling and utilization of resources, reduces reliance on and exploitation of natural resources, and thus reduces the burden on the environment. Alloy control and product quality: DC arc furnace can better control the composition of alloys and product quality, which to some extent reduces waste in the production process and improves product utilization. In summary, DC arc furnaces have shown significant advantages in reducing energy waste, reducing carbon emissions, and promoting resource recovery and utilization, which helps to improve the environmental protection and sustainability of industrial production.
  • 28
    2024-06
    The process and principle of electric furnace smelting high carbon ferrochrome
    The smelting methods of high carbon ferrochrome include blast furnace method, electric furnace method, plasma furnace method, melt reduction method, etc. Only special pig iron containing about 30% chromium can be produced in the blast furnace; The plasma furnace method and melt reduction method are new processes for smelting high carbon ferrochrome and have not yet been widely adopted. At present, high carbon chromium iron with high chromium content is mostly smelted in a submerged arc furnace using the flux method. 1、 The basic principle of electric furnace smelting The basic principle of electric furnace smelting high carbon ferrochrome is to reduce chromium and iron oxides in chromium ore with carbon. From the above reactions, it can be seen that the starting temperature for carbon reduction of chromium oxide to produce Cr3C2 is 1373K, the starting temperature for the reaction to produce Cr7C3 is 1403K, and the starting temperature for the reaction to reduce to produce chromium is 1523K. Therefore, during carbon reduction of chromium ore, chromium carbides are obtained, rather than metallic chromium. Therefore, only high carbon chromium iron with high carbon content can be obtained. Moreover, the carbon content in ferrochrome depends on the reaction temperature. It is easier to generate carbides with high carbon content than carbides with low carbon content. In actual production, during the heating process, some chromium ore reacts with coke to form Cr3C2. As the temperature of the furnace material increases, most of the chromium ore reacts with coke to form Cr7C3. The temperature further increases, and chromium trioxide plays a refining and decarbonization role on the alloy. The starting temperature of the reduction reaction of iron oxide is lower than that of the reduction reaction of chromium trioxide. Therefore, the iron oxide in the chromium ore is fully reduced at a lower temperature and dissolves with chromium carbide, forming composite carbides and reducing the melting point of the alloy. Meanwhile, due to the mutual dissolution of chromium and iron, the reduction reaction is easier to carry out. 2、 Smelting process operation of high carbon ferrochrome The production of high carbon ferrochrome using electric furnace flux method adopts a continuous operation method. The raw materials are batched in the order of coke, silica, and chromium ore to facilitate uniform mixing. The open furnace adds the material around the electrode through the feeding groove, and the material surface forms a large cone. The closed furnace directly adds materials into the furnace through the discharge pipe. Whether it is an open furnace or a closed furnace, new materials should be added in a timely manner as the furnace material sinks to maintain a certain level of material height. When the furnace condition is normal, the three-phase current is balanced, the electrodes are stable, the ventilation is good, there is no burning, and the furnace material can sink evenly; The temperature of slag and iron is normal, the composition of alloy and slag is stable, and can be smoothly discharged from the furnace; The furnace pressure of a fully enclosed furnace is stable, and the amount and composition of furnace gas do not change much. There is no explosion in the material tube when the raw materials are dry. The number of iron tapping is determined by the capacity of the electric furnace, and iron and slag are simultaneously discharged from the tapping port. In the later stage of iron production and when slag production is not smooth, round steel should be used to clear the furnace hole to help with slag discharge. Determine the depth of blockage based on the degree of erosion of the furnace lining. Carbon brick lining is blocked with refractory clay balls, while magnesium brick lining is blocked with a certain proportion of magnesium sand powder and refractory clay balls. The characteristics of abnormal furnace conditions are: 1. When the amount of reducing agent is insufficient, the electrode is inserted deeply, the current fluctuates, the load is insufficient, and the electrode is consumed quickly; The flame at the furnace mouth darkens; The alloy has low silicon and carbon content, hard iron, and many skin bubbles. The content of Cr3C2 in the slag increases, and the viscosity of the slag increases. 2. When there is an excess of reducing agent, the electrode is inserted shallowly, the current fluctuates, sparks, slag sprays, and the electrode consumption is slow; The temperature at the bottom of the furnace is low, making it difficult to open the tapping hole and discharge the slag; The content of carbon and silicon in the alloy increases, while the content of Cr3C2 in the slag decreases. 3. When there is too much silica, the electrode is deeply inserted, the flame becomes dark, the fluidity of the slag is good, the content of Cr3C2 in the slag increases, the solidified slag turns black, the furnace wall is severely corroded, the carbon content in the alloy increases, the superheat of the alloy is small, and it is difficult to discharge from the furnace. 4. When there is too little silica, the electrode is inserted shallowly, the furnace temperature is high, and there is thick slag around the electrode, which is easy to flip. The viscosity of the slag is high, making it difficult to release from the furnace. Due to the high furnace temperature, the temperature of the molten iron is high, the carbon content decreases, and the amount of slag and iron is also small. 5. When the amount of silica and coke is insufficient, the content of Cr3C2 in the slag is low, very viscous, containing many unreduced chromite and small metal particles, which are difficult to flow out of the furnace. The content of silicon and carbon in the alloy decreases. 6. When the amount of coke is insufficient and the amount of silica is excessive, the slag temperature is low, easy to melt and viscous, containing a large amount of silicon dioxide, Cr3C2, and iron oxide. The silicon content in the alloy decreases and the carbon content increases; Insertion depth under the electrode increases consumption. 7. When there is an excess of silica and coke, the slag is easily melted, and some coke with hanging slag is discharged from the tapping hole; The silicon and carbon content in the alloy are both high; Unstable insertion of electrodes. 8. When there is excess coke and insufficient silica, the electrode is lifted up, causing a stinging fire, and coke sprays out from the crucible; The melting point of slag is high, the temperature of slag is also high, the content of Cr3C2 in slag is low, the slag is viscous, and it is not easy to release from the furnace. The chromium content in the alloy depends on the chromium iron ratio in the chromium ore and the recovery rate of chromium. The carbon content in alloys is mainly related to the physical properties of chromium ore. When chromium ore has good melting ability and small block size, the feeding rate is fast, the furnace temperature is low, and the carbon content of the alloy is high; On the contrary, if the ore is difficult to melt, has a large block size, slow feeding speed, and high furnace temperature, due to the refining effect of Cr3C2 on chromium carbides in the block ore, the carbon content of the alloy is low. The silicon content in the alloy is mainly related to the amount of reducing agent used, the silicon dioxide content in the slag, and the furnace temperature. If the amount of reducing agent is high, the furnace temperature is high, and the silicon dioxide content in the slag is relatively high, the silicon content in the alloy is also high; On the contrary, the silicon content in the alloy is low. The silicon content of the alloy fluctuates between 0.1% and 5% during production. About 80% of the sulfur in the alloy comes from coke, so to reduce the sulfur content of the alloy, low sulfur coke must be used. In the smelting process of high carbon ferrochrome, the amount of flux directly affects the composition of the slag. Due to the fact that the composition of slag determines its melting point, which in turn determines the temperature inside the furnace, selecting and controlling the composition of slag is an important issue in smelting ferrochrome. The appropriate composition of slag can reach a sufficient temperature inside the furnace, ensuring the smooth progress of reduction reaction and the smooth discharge of reduction products. The melting point of high carbon ferrochrome is over 1773K. In order to ensure a high reaction rate and facilitate the smooth release of the generated alloy from the furnace and separation of slag and iron, the furnace temperature must be controlled above the melting point of ferrochrome at 1923-1973K. Therefore, the melting point of slag should be controlled within this range. Otherwise, if the melting point of the slag is low and the temperature inside the furnace is also low, although the slag can flow out smoothly during the discharge, the molten iron cannot flow smoothly due to the low superheat, resulting in a phenomenon of more slag and less iron, and in severe cases, only slag but not iron will be discharged; If the melting point of slag is too high and the temperature inside the furnace is also high, the slag cannot flow smoothly due to the high melting point and insufficient superheat. However, if the molten iron can flow smoothly, there will be a phenomenon of less slag and more iron, and in severe cases, only iron will be produced without slag. After the reduction of Cr3C2 and FeO in chromite, the remaining main oxides are magnesium oxide and aluminum trioxide. Both of these oxides have high melting points and require the addition of a flux (silica) to lower their melting points before they can flow out of the furnace. Therefore, the amount of flux directly affects the composition of the slag. The amount of silica added is determined based on the aluminum magnesium silicon ternary phase diagram. Due to the ratio of magnesium oxide to aluminum trioxide in the slag being around 1, it is possible to draw a line perpendicular to the bottom through the vertex of silicon dioxide. The points on the line represent the melting point of the slag, which decreases with the increase of silicon dioxide content. When the ratio of magnesium oxide to aluminum trioxide changes, it has little effect on the melting point of the slag, because the isomelting line is basically parallel to the bottom line. When checking the ternary phase diagram, the sum of the contents of silicon dioxide, aluminum trioxide, and magnesium oxide in the slag must be converted to 100%. The content of alumina in slag has an impact on the viscosity of the slag. If the content of alumina in slag is too high, the viscosity of the slag will increase, which is not conducive to slag discharge. But aluminum trioxide can increase the resistivity of the slag, which is beneficial for deep electrode insertion, so a certain amount is required.
  • 28
    2024-06
    Electric arc furnace fabric and power transmission system have doorways
    In the modern large and medium-sized steel casting production enterprises, the electric energy consumption per ton of molten steel in the electric arc furnace is an important energy index. Now we have the experience in the production of 30t electric arc furnace in our company's cast steel business unit, and talk about the relationship between electric arc furnace fabric and power transmission system. The original cloth method of Harbin Electric Machinery Co., Ltd. simply stipulates that the heavy material is added to the bottom and the upper part is light and thin; the power transmission system is for 5~10min for small current and low voltage, and the highest voltage and maximum after the arc is buried in the scrap. The current is sent and melted, and the oxygen is cut in the middle. After the collapse is completed, the reactor is removed, and the three-stage voltage is supplied, and the current is appropriately adjusted according to the smelting condition. After the energy management refinement and upgrading, we found that the same material, the same tonnage of smelting furnaces, different time, different power consumption, statistical analysis found that the same charge, the maximum power transmission, the whole furnace for the steel sheet furnace The average average smelting speed is obviously faster than the average melting speed of most risers plus a small amount of waste steel sheet heat, and the uniform melting rate of the charge is faster than that of the furnace. Most of the charge is a riser, with an average power consumption of 20%. Several comparison tests were conducted for the number of heats that were loaded into large risers. The first group is the highest voltage and maximum current after penetrating the well. The second group is the voltage drop to 2 after the well, the current is reduced by 20%, the melting rate is not significantly different, and the second group of power consumption is reduced by 5% to 10%. . Our analysis believes that the melting rate of the large riser and the edge of the charge is slow, the power supply is too fast and can not be absorbed quickly, local high temperature, large heat dissipation, resulting in increased power consumption. The adjustment measures are as follows: the feeding material is as stable and uniform as possible, so that the charging material, especially the heavy material, is not biased toward the edge of the furnace body; when the material block is too large, the power supply strength is appropriately reduced. In the case where the same tonnage, the same furnace charging method and the power transmission mode have appeared in the test, the smelting time is also similar, but the power consumption varies greatly. The maximum energy consumption is 15%. According to the voltage and current loaded into the electric furnace, we calculate the electric energy input into the electric furnace, and find that the electric energy used for melting is basically similar. The difference is that the working time of the reactor is different, because the reactor consumes a part of electric energy, resulting in an increase in reactive power. , resulting in an increase in electricity consumption per ton of molten steel. After a period of statistics, the energy consumption of the furnace with a long period of time is too large. Through reasonable cloth and oxygen blowing, it is possible to advance the time of leaving the reactor and reduce the power consumption of smelting. The power transmission system of the electric furnace is a main working system used by the electric arc furnace. It should not be static. It should be adjusted according to the specific conditions of the charging materials. The fabric is a basic work and should be strictly according to the smelting characteristics of the electric arc furnace. Prescribe and refine operations.  
  • 07
    2024-05
    Calcium carbide and ferroalloy will limit production
    According to relevant national and regional policies, from now on, the city will restrict the production of calcium carbide and ferroalloy. In order to conscientiously implement the State Council's video and telephone conference on energy conservation and emission reduction work and the “State Council’s Circular on Further Enlarging Work to Ensure the Implementation of the “Eleventh Five-Year Plan” Energy Conservation and Emission Reduction Targets”, the Autonomous Region Government issued the “Inner Mongolia People’s Government’s Implementation Guarantee” a few days ago. After completing the "Eleventh Five-Year Plan" emergency measures for energy saving targets, it was decided to limit the production of calcium carbide and ferroalloy, and the output of calcium carbide and ferroalloy allocated to our city was 1 million tons and 190,000 tons, respectively. In order to ensure the completion of the “Eleventh Five-Year Plan” energy saving target, strictly implement the plan for production distribution of calcium carbide and ferroalloy in the autonomous region, and according to the needs of the energy conservation situation, the city decided to implement restrictions on production or production suspension of calcium carbide and ferroalloys so as to curb the rapid growth of calcium carbide and ferroalloy. . From now on, all ferrosilicon enterprises in the city's ferroalloy industry will stop production, the remaining production will be allocated to ferromanganese, ferrochrome, nickel-iron and other enterprises; calcium carbide will be allocated to calcium carbide as much as possible by quotas, the integrated upstream and downstream PVC group.
  • 06
    2024-05
    Aluminum Industry Technology: Analysing the Characteristics of Vertical Aluminum Alloy Quenching Furnaces
    The vertical aluminum alloy quenching furnace is a cycle-type resistance furnace, which is mainly used for the heating of quenched aluminum alloy parts. The vertical aluminum alloy quenching furnace has the advantages of uniform furnace temperature, rapid temperature rise, short water inlet time, and low energy consumption. The temperature control system of the vertical aluminum alloy quenching furnace adopts PID zero-triggered thyristor, and the structure of the electric furnace consists of bottom bracket, heating furnace body, heating element, hot air circulation system, mobile quenching tank truck, basket lifting mechanism, control system, etc. Partly composed. Brief introduction of vertical aluminum alloy quenching furnace: The vertical aluminum alloy quenching furnace consists of a heating furnace cover and a mobile chassis. The square (or round) furnace hood is equipped with a crane, and the basket can be hoisted to the furnace through chains and hooks. The furnace hood is supported by a profiled steel and the bottom of the oven door is operated pneumatically (or electrically). The base frame below the furnace hood can be moved along the track and positioned. The chassis carries the quenched water tank and basket. Vertical aluminum alloy quenching furnace features: (1) Temperature uniformity of vertical aluminum alloy quenching furnace The temperature uniformity achieved by the user is guaranteed by the associative design of the circulation fan, wind deflector plate, furnace structure, electric power distribution, arrangement of electric heating elements, control method and process, and door structure. (2) Vertical aluminum alloy quenching furnace with advanced mechanical system The advanced nature of the system is ensured by the design, component selection and quality, and processing and manufacturing quality. The mechanical system runs smoothly and reliably, and the equipment is in a state of low noise and low vibration. (3)Vertical aluminum alloy quenching furnace has perfect control system Reflected in 100 - 650 °C can achieve accurate temperature control, the system is stable and reliable, easy to operate, to avoid human error operation, complete functions and so on. (4) Quenching transfer time is rapid and adjustable Bottom-moving furnace door, rapid lifting mechanism, and advanced mechanical system make the quenching transfer fast and reliable. The time can be based on the user's process requirements, quenching speed ≤15S. (5) The quenching tank adopts a mobile trolley, or adopts the form of a pit, so that the workpiece can be processed conveniently and quickly.

KONTAKTIERE UNS

EMAIL

Online consultation, we will get back to you as soon as possible

* * *
*

HOT PRODUCTS

Mehr sehen

COMPANY CERTIFICATE

ANYANG YOUNENGDE ELECTRIC CO.,LTD

EMAIL : 13949514533@163.com

ADD. : Northwest corner of the intersection of Huaxiang Road and Angang Avenue, Anyang, Henan China

Copyright ©2024 ANYANG YOUNENGDE ELECTRIC CO.,LTDAlle Rechte vorbehalten Powered by
We will contact you immediately

Fill in more information so that we can get in touch with you faster

Privacy statement: Your privacy is very important to Us. Our company promises not to disclose your personal information to any external company with out your explicit permission.

senden